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Abstract. Asthe techniques for Android malware detection are progress-
ing, malware also fights back through deploying advanced code encryption
with the help of Android packers. An effective Android malware detec-
tion therefore must take the unpacking issue into consideration to prove
the accuracy. Unfortunately, this issue is not easily addressed. Android
packers often adopt multiple complex anti-analysis defenses and are evolv-
ing frequently. Current unpacking approaches are either based on manual
efforts, which are slow and tedious, or based on coarse-grained memory
dumping, which are susceptible to a variety of anti-monitoring defenses.

This paper conducts a systematic study on existing Android mal-
ware which is packed. A thorough investigation on 37,688 Android mal-
ware samples is conducted to take statistics of how widespread are those
samples protected by Android packers. The anti-analysis techniques of
related commercial Android packers are also summarized. Then, we pro-
pose AppSpear, a generic and fine-grained system for automatically mal-
ware unpacking. Its core technique is a bytecode decrypting and Dalvik
executable (DEX) reassembling method, which is able to recover any
protected bytecode effectively without the knowledge of the packer. App-
Spear directly instruments the Dalvik VM to collect the decrypted byte-
code information from the Dalvik Data Struct (DDS), and performs
the unpacking by conducting a refined reassembling process to create
a new DEX file. The unpacked app is then available for being analyzed
by common program analysis tools or malware detection systems. Our
experimental evaluation shows that AppSpear could sanitize mainstream
Android packers and help detect more malicious behaviors. To the best
of our knowledge, AppSpear is the first automatic and generic unpacking
system for current commercial Android packers.
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1 Introduction

As Android malware emerges rapidly, more and more malware detection tech-
niques leverage in-depth program analysis to help understand program and
detect malicious behaviors automatically. A range of static and dynamic analy-
sis approaches (e.g., using machine learning techniques to detect malware, using
code similarity comparison to classify malware families) have been proposed for
detecting malicious Android apps and the progress is significant [7,11,30]. To
thwart program analysis based automated malware detection, malware authors
gradually adopt code protection techniques [8,26]. Although these techniques
are initially designed to counter reverse engineering and effectively resist many
program tampering attempts, they are becoming a common measure of malware
detection circumvention. Among various code protection techniques, the most
popular one is the code packing technique, which transforms the original app to
an encrypted or obscured form (a.k.a “packed app”). According to the report [3]
released by AVL antivirus team, among over 1 million Android malware samples
they detected, the number of code packed malware is about 20,000. Unfortu-
nately, current program analysis techniques and tools do not consider the code
packing issue and could not perform effective analysis task on packed code, and
thus are not able to detect those kinds of packed malware statically and auto-
matically. In addition, anti-debugging code stubs are frequently injected into a
packed app to interfere dynamic analysis based sandbox detection system. In a
word, code packing is becoming a main obstacle for the state-of-the-art auto-
mated Android malicious code analysis.

To response, this paper conducts a systematic study of packed Android mal-
ware, and our work examines the feasibility of universal and automated unpack-
ing for Android applications. The goals and contributions of this paper are
twofold: First, we conduct a thorough investigation on large-scale Android mal-
ware samples to take statistics of how widespread those malware samples are
protected by Android packers. We start the investigation from studying 10 pop-
ular commercial Android packers used by malware authors frequently, which
cover the majority of existing Android packing techniques, and summarizing the
anti-analysis techniques of those commercial Android packers. We then conduct
the investigation among 37,688 Android malware samples, which contain 490
code packed malware. The dataset is accumulated from an online Android app
analysis system—SandDroid [5] lasting for more than three years in collecting
related packed malware samples. To the best of our knowledge, this is the first
in-depth investigation on code packed Android malware. Second, to address the
challenge of analyzing code packed malware, we propose AppSpear, a generic
and fine-grained unpacking system for automatically bytecode decrypting and
Dalvik executable (DEX) reassembling. As our investigation demonstrates, com-
mercial Android packers are evolving rapidly. Packers’ ongoing evolution leads to
an endless arms race between packers and unpackers, and it requires a non-trivial
amount of efforts for security analysts to tackle this problem. Since the amount
of packer and malware increases at a significant speed, manual unpacking is
not feasible for large-scale packed malware analysis. To avoid decrypting packed
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code through manually comprehending different packing algorithms, AppSpear
directly instruments the execution to extract all runtime Dalvik Data Structs
(DDS) in memory and reassembles them into a normal DEX file. The purpose
of AppSpear is to automatically rebuild the code packed app into its normal
form so that this rebuilt app is able to be analyzed by program analysis tools. A
bytecode decrypting and DEX reassembling process for code packed malware is
executed to automatically reverse code protection techniques of Android packers.

Previous unpacking approaches [17,25,28] mainly focus on dumping the loaded
DEX data in memory directly to recover the original DEX file. To thwart such
memory dump based unpacking, new advanced packers would reload the DEX
data into inconsecutive memory regions and modify relevant pointers that point to
the data, which leads to a malformed dumped data. Moreover, some information
in DEX is crucial to static analysis tools but is irrelevant to dynamic execution
(e.g., metadata in DEX file Header). Packers could wipe or modify this kind of
information in memory, which makes it difficult to locate a DEX file in memory.
Hence, AppSpear adopts a more comprehensive runtime information reassembling
approach rather than the simple memory dumping approach. It rebuilds a packed
malware through three main steps: First, AppSpear leverages Dalvik VM intro-
spection to circumvent anti-debugging measures of the packer and transparently
monitors the execution of the packed app. During the monitoring, it records exe-
cution traces and runtime Dalvik Data Structs (DDS) in memory as raw materials
for the next step. Second, AppSpear makes use of a proposed DEX reassembling
technique to reassemble the collected materials into a normal DEX that is suitable
for static analysis. Third, AppSpear makes use of an APK rebuilding technique to
re-generate an APK file with inserted anti-analysis code resected.

To validate AppSpear, we first employ all code protection techniques of seven
currently available online Android app packing services to pack our test app, and
then use AppSpear to unpack the packed samples. AppSpear is able to decrypt
every sample and output the reassembled app that corresponds to the original
test app well. Further, among the 490 packed malicious apps in all collected 37,688
samples, we select 31 representative samples that are able to execute and use App-
Spear to unpack them. All of those samples can be decrypted and reassembled by
AppSpear, and the rebuilt apps expose obvious malicious behaviors that could not
be detected by static app analysis tools (e.g., AndroGuard) before.

This paper makes the following contributions:

— We perform a thorough investigation on both existing mainstream Android
packers and code packed Android malware in the wild. We further summarize
typical anti-analysis defenses of Android packers.

— We propose a bytecode decrypting and DEX reassembling technique to rebuild
protected apps. Our APK rebuilding process transforms a code packed mal-
ware to an unpacked one, which is a feasible form for commodity program
analysis.

— We design an automated and generic unpacking system, AppSpear. AppSpear
can deal with most mainstream Android packers and the unpacked apps can
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be validated by state-of-the-art analysis tools, which are not able to handle
the packed form beforehand.

We detail on the investigation of existing Android packers and code packed
malware in Sect.2 and on our proposed unpacking technique in Sect.3. The
experimental evaluation is reported in Sect.4. Before concluding in Sect.7 we
discuss related work and possible limitations in Sects.5 and 6.

2 Code Packed Android Malware

The purpose of our investigation includes: (a) to find out the ratio of code packed
malware in the wild, and (b) to understand the anti-analysis defenses used by
those packers. We conduct a large-scale investigation on 37,668 malware samples
collected from the SandDroid online Android app analysis system from 2012 to
May 2015. Then we analyze and summarize the anti-analysis techniques used by
popular commercial Android packers.

2.1 Investigation

To judge whether a malware sample is packed, and which packer it used to
protect itself, we adopt a signature based identification strategy to detect code
packed malware. We observe that each commercial Android packer brings its
unique native .so library, which can be used as the signature of that packer.
We first investigate 10 popular commercial Android packers (Bangcle, Ijiami,
Qthoo360, etc.) and build a signature database. Then, we collect 37,668 mal-
ware samples from 2012 to May 2015 using SandDroid, which detects malware
according to the feedback results of 12 main virus scan engines from VirusTotal
(F-Secure, Symantec, AntiVir, ESET-NOD32, Kaspersky, BitDefender, McAfee,
Fortinet, Ad-Aware, AVG, Baidu-International, Qihoo-360). An app is regarded
as malware if more than three virus scan engines detect it.

As Table 1(a) shows, the amount of packed malware increases significantly
since 2014. The distribution of packer type used by malicious apps is showed in

Table 1. Summary of packed android malware

(a) Annual statistics (b) Distribution of packers
lYear‘Malware collected‘Packed‘ Ratio‘ l Packer ‘Number of Samples‘
2012 16157 6 10.04% APKProtect 37
2013 15443 89 10.58% Bangcle 402
2014 5819 376 16.46% NetQin 10
2015 249 19 |7.63% Naga 1

Qihoo360 23
[jiami 27
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Table 1(b). Among those samples, Bangcle becomes the most welcome packer,
which corresponds to its market share in Android code protection field.

Although most commercial Android packing service providers have stated
that every submitted app is first checked by various antivirus products, we still
find malware samples protected by those packers. We believe that no packing
service provider could prove the accuracy of malware detection. Malicious app
may not be detected at the time it was submitted due to the updating latency of
the used antivirus products. In this situation, packing services may help produce
code packed Android malware in the wild.

2.2 Anti-Analysis Defenses

Android packers often use a variety of defenses to hinder analysis. To compre-
hend how Android packers obstruct program analysis, we manually analyze 10
commercial Android packers that provide public online packing services. Our
analysis indicates that anti-analysis defenses employed by those packers can be
classified into three categories. The first category of anti-analysis defenses involve
functions that check the static and dynamic integrity of the app (i.e., whether
the app is patched or injected with debugging routines). These measures can be
easily circumvented if analysts know the tricks beforehand. The second category
of anti-analysis measures involve source code level obfuscation, which requires
the source code to employ the protection. The third category, which is most
complex, involves bytecode hiding.

2.2.1 Integrity Checking

Packers generally check the integrity of their packed apps to decide whether the
apps are tampered. They check both the integrity of the static code and the
dynamic process. For static code integrity checking, packers often calculate the
checksum of the code part to determine whether the code is modified. Specifically,
for Android app the certificate of the APK is validated by many packers. For
dynamic process integrity checking, packers often calculate the checksum of DEX
data loaded in memory at runtime. Moreover, they also detect the existence of
debuggers or emulators. Besides the traditional anti-debugging tricks used in
desktop Linux system (e.g., to fork subprocesses and PTRACE one other, to
check /proc/self/status or /proc/self/wchan), some packers hook the write and
read syscalls to thwart memory dump based DEX data acquiring. They check
whether the code region is accessed or manipulated. If so, such operations will
be abandoned.

2.2.2 Source Code Obfuscation

Many developers would obfuscate their source code before their apps are released.
Because most Android apps are written in Java, classic Java code obfuscation
techniques can be directly employed on Android app. Those techniques mainly
include:
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— Identifier mangling: renaming class names, method names and variable
names as meaningless strings or even non-alphabet unicode.

— String obfuscation: replacing static-stored strings with dynamic generated
ones.

— Reflection: hiding method invoking using Java reflection mechanism.

— Junk code injection: injecting useless code to change original control flow.

— Goto injection: using goto to make control flow hard to understand.

— Instruction replacing: using a set of instructions to replace one instruction
while keeping the semantic of the replaced instruction.

— JNI control flow transition: using JNI invoking to hide the real control
flow.

Source code obfuscation requires the involving of developers during the devel-
opment stage. The main problem for source code obfuscation is that it does not
provide enough protection strength to counter bytecode level program analysis.
Most source code obfuscation techniques only increase the comprehension com-
plexity for manual reverse engineering. Malicious code, which mainly needs to
hinder automated program analysis based detection, requires more sophisticated
protection.

2.2.3 Bytecode Hiding

When published, the Java source code of an Android app is first compiled with
standard Java compiler into Java bytecode files (.class files), and these files
are then transformed into a DEX file with the dz tool provided by Google.
Information of bytecode is thus contained in this DEX file. To prevent the analyst
from acquiring bytecode information from the app, packers modify the original
executables to thwart state-of-the-art analysis tools. Typical measures include
metadata modification and DEX encryption.

In Android app, many metadata could be modified without affecting the nor-
mal execution, but the modification significantly affects certain analysis tools.
Packers would sabotage program analysis through modifying some crucial meta-
data of the APK file to create malformed executables, and leverage this as an effec-
tive defense to counter analysis. Typical metadata modification measures include:

— Manifest cheating [21]: modifying the binary form of the Manifest.aml
directly and injecting name attribute into <application> with unknown id.
Android system will ignore this attribute because the id is unknown. But when
typical analysis tools (e.g., Apktool) repackage it, this name will be included
and is not able to be correctly parsed. Packers can utilize the difference to
prevent itself from repackaging.

— Fake encryption [1]: setting the encryption flag in ZIP file header though
the file is actually not encrypted. Old version of Android(<=4.2) ignored this
flag but decompression modules of APK static analysis tools often check it,
which leads to an error.

— Method hiding [6]: modifying the method_idz_diff and code_offset of certain
encoded_method in DEX file and pointing to another method. It would make
the method invisible to most APK static analysis tools.
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— Illegal opcodes [23]: injecting illegal opcodes or corrupted object in DEX
file to break static analysis tools.

— Anti decompilation [23]: adding some non-existing classes to break decom-
piler and prevent them from converting Dalvik bytecode to JAVA.

— Magic number tampering: erasing or modifying the magic number of DEX
files. It increases the difficulty of locating the DEX file in memory.

Notice that metadata modification measures are actually tricky defenses that
do not really hide the bytecode information. Therefore, it is feasible to circum-
vent these defenses to acquire bytecode with refined static analysis. In addition,
with the verification of DEX format becoming stricter, these tricky defenses are
not available anymore.

To thoroughly hide bytecode and thwart static analysis, packers employ DEX
encryption techniques. Similar to classic code packers on commodity desktop com-
puter platforms, a DEX encryption scheme generally relies on a decrypting stub
responsible for decrypting encrypted bytecode at runtime. Packers would place
the decrypting stub in native code part of a protected app as an initializer. The
encrypted bytecode is first decrypted by the decrypting stub in packer’s native
code, and then the Dalvik VM will load and execute the decrypted bytecode.

There are generally two types of code releasing strategies for DEX encryp-
tion schemes. The first strategy performs a full-code releasing, which decrypts
the entire encrypted DEX file before the control flow reaches to it, and does
not modify the released DEX file after the transition from unpacking routine
to bytecode. The second strategy performs an incremental code releasing, which
selectively decrypts only the portion of code that is actually executed, and may
encrypt it again after the execution. This strategy is used as a mechanism to
prevent memory dump based unpacking. Traditionally, one specific packer gen-
erally adopts only one code release strategy (e.g., full-code releasing adopted by
Bangcle and APKProtect). Latest packers, however, start to adopt both kinds of
encryption schemes to strength their protections. For instance, the Baidu packer
will first release a decrypted DEX, which does not contain the original bytecode
however. It contains a second decrypting stub responsible for decrypting original
bytecode of a method once it is invoked. That is, the packer employs a two-layer
encryption based code protection.

The decrypting stub of DEX encryption schemes could be implemented in
either Java or native code. DEX file level encryption schemes in Java usually
leverage the DexClassloader method or the openDezFile interface to fulfil a
dynamic code loading based DEX releasing. The decrypting stub executes before
the DEX file is loaded and releases the decrypted DEX file for the Dalvik VM.
However, this kind of code releasing is easily monitored if analysts could hook
certain interfaces of Android system services. Thus many schemes prefer the
native code, which is more difficult to be analyzed, to fulfil a specific Dalvik
bytecode hiding via DEX file encryption. Those schemes tend to encrypt the
code at the method level and use native code to directly manipulate memory
instead of invoking certain system APIs.
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3 AppSpear

3.1 Overview

The target of AppSpear is to fulfil an automated unpacking process against
most common Android packers. The involved issues of this process include anti-
analysis defense circumvention, DEX decrypting, and executable rebuilding. The
most difficult part of this process is how to overcome the deployed DEX hiding
techniques. Generally, most Android packers leverage the hybrid code execution
style of Android app and implement bytecode decrypting stubs in native code,
which are also heavily-packed and obfuscated, thus, difficult to be analyzed and
comprehended. Current effective unpacking approaches require a manual reverse
engineering to recover the decryption algorithm, and then develop corresponding
tools to decrypt the packed bytecode. This process is time-consuming and is
easily countered by the packer if it changes its encryption algorithm. To address
this challenge, AppSpear adopts a universal Android code unpacking method
that does not need to know the detail of the code encryption algorithm. The
core intuition of our work is to make use of runtime Dalvik Data Structs (DDS)
in memory to reassemble a normal DEX file. When an Android app is installed
and executed, its APK file is first decompressed and the belonging DEX file
is parsed into different structs of the Dalvik VM instance. The DEX file is a
highly structured bytecode data file. Dalvik VM parses the DEX file to initialize
the DexFile struct and then initializes a series of DDS in memory. These DDS
are essential elements of app execution and thus are not allowed to be hidden
or arbitrary tampered, otherwise the app will crash. Many packers intentionally
modify the mapped DEX data in memory after the DDS initialization to prevent
a memory dump based unpacking, but those DDS must be kept accurate to
guarantee the stability of the execution. Hence, AppSpear collects those runtime
DDS in memory to reassemble the decrypted DEX file.

The feasibility of our work is based on two observations: (1) the packer’s func-
tionality is implemented in an independent part of the app (e.g., as a dynamic
library), and is responsible for initializing the app by releasing the original DEX
bytecode before it is loaded by the Dalvik VM. For most Android packer, there
exists a clear boundary between these two parts and a transition process from the
packer’s code to the original code. This is because the hybrid execution model of
Android app restricts the arbitrary control flow transition between DEX execu-
tion and native code execution. Generally an app would fulfil the transition only
through certain system services. Thus we can detect this boundary by monitoring
certain JNT interfaces and determining when to start the DDS collection. (2) No
matter how complex the packer encrypts the original data, it seldom modifies the
semantic of the original bytecode. After the DEX loading process, it is expected
to observe accurate content of the bytecode of the original app from the DDS.

Figure 1 illustrates the overview of AppSpear’s unpacking process. In detail,
AppSpear employs the unpacking through three main steps: First, to circumvent
various anti-analysis measures of Android packers. AppSpear introspects the
Dalvik VM to transparently monitor the execution of any packed app. Second,
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Fig. 1. An overview of AppSpear’s unpacking process

AppSpear collects DDS in memory and performs a reassembling process on the
collected DDS with some modified methods fixed to re-generate a DEX file,
Finally, AppSpear resects anti-analysis code and further synthesizes the DEX
file with the manifest file and other resource files from the original packed APK
as an unpacked APK. After those three steps, this unpacked app is expected to
be analyzed by most regular Android app analyzing tools.

3.2 Transparent Monitoring

Android packers generally adopt complex anti-analysis measures to detect debug-
gers, emulators and static analysis tools. To effectively circumvent these anti-
analysis measures, AppSpear adopts a transparent Dalvik VM instrumentation
based bytecode monitoring and retrieving. AppSpear monitors the execution of
the app at the Dalvik VM layer, thus is transparent to any bytecode level detec-
tion. It is also a very transparent code monitoring to native code level detection
because our monitoring is a compilation time instrumentation code injection
rather than runtime instrumentation code injection. A runtime instrumentation
code injection heavily relies on system provided interfaces (e.g., ptrace) to per-
form the monitoring, and is easily detected by packers. Compared with them,
AppSpear integrates its monitoring code with the Dalvik VM’s interpreter and
is thus very difficult to be aware of.

AppSpear performs a fine-grained bytecode level instrumentation. We mod-
ify the fast interpreter of Dalvik VM to insert an instrumenting stub in each
instruction’s interpreting handler. Our implementation inserts a function call
stub at the very beginning of every opcode’s interpretation code. This brings
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a flexible monitoring that guarantees AppSpear could start unpacking at an
arbitrary point of the execution.

To evade typical emulator detecting of packers, AppSpear is deployed on a
standard Android device, Google’s Nexus phone, instead of an emulator. This
guarantees a very trustworthy analyzing environment: if the malware or the
packer refuses to execute on this device, then it is not compatible with most
other Android devices. The deployment of AppSpear is simple. It only modifies
the Dalvik VM’s library (/system/lib/libdvm.so) in system, and is compatible
to many mainstream Android devices.
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Fig. 2. DEX reassembling

3.3 Dex Reassembling

DEX reassembling of AppSpear is a reverse process of the DEX loading procedure.
A Dalvik Data Struct (DDS) is a crucial data structure for the execution of the
Dalvik VM. A basic fact for Android app’s execution is that the runtime DDS in
memory contain the actual execution code and data information of an app. App-
Spear leverages this to employ the DEX reassembling process. Dalvik VM main-
tains 18 DDS parsed from a DEX file during runtime. Those DDS can be classified
into two types in our definition: The first type is the index DDS (IDDS) including
Header, Stringld, Typeld, Protold, Fieldld, Methodld, ClassDef and MapList. The
main functionality of IDDS is to index the real offset of the second type of DDS:
CDDS, which refers to the content DDS (CDDS) including TypeList, ClassData,
Code, StringData, DebuglInfo, EncodedArray and four items related to Annotation.
This type of DDS mainly store raw data of bytecode content information. Since
Annotation relevant DDS are seldom related to program’s functionality and thus
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are less important for program analysis, AppSpear currently ignores these parts
of items in the process of reassembling. We leave it for future work.

As Fig. 2 shows, in normal DEX loading process, DEX is mapped in consec-
utive memory. IDDS in initialized DexFile struct point to CDDS in the mapped
data space. However, packers may modify raw DEX file or data in memory to
produce some malformed data structures and lead to an inaccurate analysis. For
instance, packers may modify some metadata in DEX file header and set incor-
rect offset value of certain CDDS. Some packers even re-map different CDDS to
new separated memory space and modify the offset value in IDDS to point to
the new addresses. Therefore, AppSpear needs to collect DDS in memory and
rewrite a new DEX file other than just dumping the mapped DEX in memory
to complete the whole unpacking process.

Then we describe the two phases in detail: DDS collection and DEX rewriting.

*pStringIds pStringIds([0]

-stringDataOff

»| stringData

pStringIds[n]

-stringDataOff
pProtoTd (0]
-parametersOff.
» typelist
pProtoId[n]
-parametersOff.

*pClassDefs pClassDef [0]

-interfaceOff

-staticValueOff
-classDataOff

!

—}‘ EncodedArray

pClassDef [n]
-interfaceOff

-staticValueOff
-classDataOff

\ 4

ClassData b—}classData [n]

-DexMethod
--codeOff ———

Code

ClassDatal[0]
-DexMethod
--codeOff

Fig. 3. DDS collection
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3.3.1 DDS Collection
AppSpear collects necessary DDS information to help rebuild a normal decrypted
DEX file. However, after the DEX loading process a set of information in the
original DEX file is either lost or intentionally modified by packer. The main
difficulty involves how to precisely acquire the data content of DDS. AppSpear
evades these obstructions by reusing the Dalvik VM’s parsing methods (e.g.,
dexGetXXX methods in DexFile.h [4]), which always provide accurate results.
To collect DDS, AppSpear first introspects the Dalvik VM instance to access
the DexFile struct through Method->clazz->pDvmDez->pDexFile when instruc-
tions are being interpreted. Figure 3 depicts the DDS collection process. AppS-
pear starts the DDS collection from locating the DexFile struct and then access-
ing certain IDDS including pStringlds, p Typelds, pProtolds, pFieldlds, pMetho-
dlds, pClassDefs in DexFile struct. These IDDS are fixed size structs thus their
contents are directly read. Notice that the DexHeader struct also contains point-
ers of CDDS, but AppSpear avoids accessing them directly because of the poten-
tial modification of packers. Specifically, AppSpear traverses all attributes of
IDDS to collect accurate offset of CDDS including StringData, TypeList, Class-
Data, EncodedArray, Code, etc. After determining the offset, AppSpear further
accesses the size attribute of each DDS to determine the length.

3.3.2 DEX Rewriting

After acquiring the size and offset of DDS in memory, the next step is to deter-
mine how to place each DDS into a re-created DEX file. According to the order
of map item type codes defined in DexF'ile.h, AppSpear re-orders the collected
DDS and writes them back to the DEX file in order.

During the rewriting an important issue for AppSpear is the offset adjust-
ment. A DDS in memory maintains many pointers that point to other DDS and
the contents of these pointers are reloaded values that represent the offset at
runtime. When this DDS is written back into DEX file, AppSpear should adjust
this offset value to a new one that represents the actual offset in DEX file. App-
Spear checks every pointer of DDS to adjust this offset value when performing
DEX rewriting. Because the entire MapList struct stores offset and size of other
DDS, AppSpear re-calculates all metadata in MapList during rewriting process.
In addition, in case that the packer’s modification of certain value, AppSpear
directly uses known knowledge to fill them in DEX file (e.g., size of header, magic
number of header) instead of reading them from raw DDS in memory.

What’s more, during the DEX rewriting, AppSpear should also consider the
type difference between DEX file and DDS. First, in DEX file the data is 4-byte
aligned. Thus during the rewriting, AppSpear fills the gap with null byte if the
size of the DDS is not 4-byte aligned. Second, in DEX file the size attribute
of ClassData is generally encoded in ULEB128, but its corresponding attribute
in DDS is directly stored in a 32-bit variable. The rewriting should transform
this 32-bit value with ULEB128 encoding. Finally, in ClassData struct the id
of method and field is the actual value, but when rewriting they should be
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adjusted into a relative offset to the first id in each ClassData. AppSpear would
automatically calculate these differences to generate a rewritten DEX file.

3.3.3 Multiple Unpacking

AppSpear needs to collect DDS at certain point of execution (denoted as unpack-
ing point) to guarantee the effectiveness of DEX reassembling. The instruction-
level instrumentation of AppSpear proves that it could choose arbitrary point to
perform collecting, which is significant for fighting against self-modified packers.

The default unpacking point of AppSpear is determined by an APK’s mani-
fest file. We choose the main activity as default unpacking point because packers
are not allowed to modify the original four components in Android although they
can add new <application> to the manifests file. Once the Dalvik VM’s inter-
pretation meets the main activity, AppSpear starts the collection.

A particular difficult point is that an app may load multiple encrypted Dalvik
executables at runtime. As a result, our unpacking should also employ DDS
collection at each point when a new DEX file is loaded. AppSpear introspects
the execution of Dalvik VM and monitors the context. When certain context
(e.g., DexClassloader is invoked by the app or a new DexFile struct is met) is
encountered, a DDS collection procedure is triggered. In this way, AppSpear
guarantees that any runtime loaded DEX file could also be captured.

One issue for our dynamic analysis based unpacking is that if an encrypted
method is not executed during runtime, it would not be able to be decrypted and
reassembled into the re-generated app. To handle this, AppSpear traces executed
instructions for multiple times, trying to trigger the hidden methods as much
as possible. After the tracing phase, AppSpear performs an offline comparison
between methods in DEX file and methods in traces. If one method in DEX
file does not correspond to that in traces, it will be repaired using the accurate
result in traces. Although dynamic analysis will meet the incompleteness issue,
AppSpear tries to approach a practically acceptable result. Moreover, if a mali-
cious method is not executed in our device, it is not expected to be triggered in
real world devices.

3.4 APK Rebuilding

Many Android app analysis tools require a complete APK file instead of a sole
DEX file to perform analysis. Moreover, in our reassembled DEX file there still
exists a small amount of anti-analysis code injected by packers to obstruct analy-
sis. AppSpear performs a last step APK rebuilding to solve these issues.

3.4.1 Anti-analysis Code Resecting

Packers usually leverage bugs of some analysis tools to inject code stubs that
obstruct the normal analysis. AppSpear resects those code stubs to help analysis.
Because those code stubs are very specific and aim at certain analysis tools, they
usually have obvious features and are easily detected. AppSpear maintains an
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empirical database of this kind of code and automatically resects any code stubs
in database when encountering.

3.4.2 APK Repackaging

AppSpear combines the reassembled DEX file with materials from the existing
packed app including manifests.zml and resource files to repackage the app. The
manifests file of an app declares the permissions and the entry points of the app.
The declared permissions are directly used in our repackaged app while the entry
points should be adjusted. Some packers may modify the main entry point to
their decrypting stubs so that they could perform DEX decryption before the
interpretation of the Dalvik VM. AppSpear would fix this entry point hijacking
with the original entry point of the DEX file.

4 Experimental Evaluation

To evaluate the effectiveness of AppSpear, we test malware samples packed by 10
mainstream commercial Android packers, which cover the latest and most com-
plex Android packing techniques. To illustrate and evaluate the effectiveness of
our approach on malware detection, 31 packed malware are manually chosen
from the collected 490 packed samples of SandDroid to test AppSpear. These 31
samples can run without crashes or exceptions before unpacking and are all of
different package names. In other words, we avoid to choose the packed malware
from the same original app. The chosen packed malware set covers 6 packers
(Bangcle, Ijiami, Qihoo360, Naga, NetQin, and APKProtect). Notice that latest
online Android packing services claim that they do not provide malicious code
packing service and there exist no such packed samples detected, we also want
to ensure if their countermeasures do take effect and there are no such poten-
tial packed malicious apps. So we develop a home brewed malicious app that
requires many permissions and collects sensitive data. The test app contains all
four main components (Activity, Service, Broadcast Receiver, Content Provider)
and an Application class. We submit this test app to 7 online packing services
of Bangcle (a.k.a Secneo), Ijiami, Qihoo360, Baidu, Alibaba, LIAPP and Dez-
Protector, (NetQin and APKProtect which appear in malware are not available
since the first quarter of 2015) and actually get different packed versions. In a
word, we believe that all those 10 packers (7 in existing malware samples and 3
extra online packing services) could help protect malicious apps.

We execute the packed samples on our devices implemented with AppSpear.
In our experimental evaluation, AppSpear is deployed on two devices, Galaxy
Nexus and Nexus 4 respectively, and the versions of Android operating system
are 4.3 and 4.4.2. We build a modified Dalvik VM (in the form of libdvmn.so)
based on the AOSP source code and replace the default Dalvik VM with our
AppSpear integrated one. Notice that our deployment leverages a third-party
Recovery subsystem (e.g., CWM Recovery) to fulfil the system lib replacement
and does not require a privilege escalated Android (a.k.a rooted Android), which
may fail to pass the integrity checking of some packers.
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In our experiment, AppSpear successfully circumvents all anti-debugging and
integrity checking measures of these packers, and all of the packed samples on
our devices execute stably without occurring exceptions or crashes. Using the
default setting, AppSpear conducts the unpacking as soon as the Main Activity
class invokes the onCreate method. Almost all of the samples are unpacked
automatically and the corresponding unpacked APK files are generated. As a
contrast, existing methodology such as memory dumping either fails and breaks
on the halfway due to the various anti-analysis techniques or gets the broken
DEX files that cannot be parsed correctly by other analysis tools and need
further fix.

4.1 Accuracy of DEX Reassembling

We first evaluate the accuracy and feasibility of the newly generated DEX files.
We choose 5 popular static tools to validate the reassemled DEX files. They are
DEXTemplate for 010Editor, Baksmali, Enjarify, IDA Pro and AndroGuard.
The reason why we choose these five tools is that they are all widely-used and
can parse a DEX file to extract information from it. They have their own parsing
engines and have no dependency with each other. We consider the failure of DEX
parsing as the following conditions:

DEXTemplate for 010Editor is a DEX file parsing template. It will raise errors
if the format of a DEX file is invalid. Baksmali is a widely-used disassembler
for DEX files. When disassembling invalid DEX files, it will throw exceptions.
IDA Pro also supports DEX file disassembling. If it prompts windows indicating
parsing error or can not identify the files as DEX when opening the reassembled
DEX files, then we regard this condition as DEX parsing failure. Enjarify, which
is provided by Google, is a tool for translating Dalvik bytecode to equivalent
Java bytecode, aiming to replace dex2jar. When the translation process of a DEX
file ends, Enjarify will give the result such as how many classes are translated
successfully and how many fail. As long as one class in the whole DEX file fails
to be translated, we regard it as an parsing failure. The DEX parsing engine
of Androguard is implemented by Python and remains active in open source
community. We regard the DEX parsing failure of AndroGuard occurs once it
raises errors or exceptions while it is being used to do further static analysis
(such as sensitive API extraction in DEX).

The testing set consists of 7 home brewed samples submitted to online packers
and 31 malware samples from the collected 490 packed samples, which covers 10
different packers altogether.

The result in Table 2 shows that DEXTemplate for 010Editor, IDA Pro and
AndroGuard successfully parse all reassembled DEX files. However, Baksmali

Table 2. Success rate of parsing reassembled DEX

DEXTemplate | Baksmali | Enjarify | IDA Pro | AndroGuard
38/38 37/38 34/38 |38/38 38/38
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fails to parse only one sample and raises exceptions. The reason is that some
illegal instructions, which cause the parsing failure, are intentionally inserted into
9 of 350 classes in that sample. But the exceptions in those 9 classes do not affect
the parsing of other 341 classes. Four samples fail when Enjarify tries to translate
them to JAR file. Among the 4 samples, 1% classes on average in each sample
appear the parsing errors. After manually checking the reason, we find that these
failure result from the limitations presented by Enjarify itself on its homepage.
The result proves that the success rate of parsing the reassembled DEX files
is high and those few failure cases are mainly caused by the implementation
problem of the static tools themselves.

4.2 Unpacking Code Packed Malware

Since AppSpear’s target is to rebuild a packed malware into its normal form so
that program analysis tools or automated malware detection systems are able
to analyze its real behaviors, we implement an in-depth static sensitive behavior
analysis tool based on AndroGuard to further evaluate the unpacking results.
The tool extracts the sensitive permissions of an APK and counts the number
of sensitive behaviors (our tool simply regard the sensitive API calls as sensitive
program behaviors) related to those permissions (referring to the map of APT and
permissions in AndroGuard [2]) before and after unpacking. Since packers do not
change the permissions declared in the manifest file, the number of permissions
used by samples remains still.

AppSpear conducts the unpacking work on 31 packed malware and the details
of our unpacking and analysis results are shown in Table3. The third column
of Table 3 indicates the number of sensitive permissions extracted by our static
analysis tool. The fourth column and fifth column indicate the number of sen-
sitive behaviors our static analysis tool counts before and after the AppSpear’s
unpacking respectively. As Table 3 shows, before the unpacking packers can hide
almost all sensitive behaviors of malware which can evade the detection of static
analysis tools. After the unpacking of AppSpear, the number of detected sensi-
tive behaviors in unpacked malware increases significantly. This proves that an
effective unpacking process is crucial to current malware detection.

Several noticeable observations are also revealed by our experiment: First,
the samples packed by APKProtect generally possess higher number of sensitive
behaviors compared with other samples. After a manual analysis, we find that
the packed code of APKProtect is not entirely encrypted. Instead, the DEX file
is only partially encrypted by APKProtect. As a result, some sensitive behav-
iors are not hidden by the packer before the execution and our static tool can
detect them. However, after the unpacking of AppSpear, more hidden sensitive
behaviors appear. Second, a malware sample packed by Bangcle packer (MD5
sum: OFA57B3D98C24EABB32C47CA3C47D38A) presents an unusually high num-
ber of sensitive behaviors before unpacking. After manually checking the packed
sample, we find that it consists of several third-party libraries which contain
those sensitive behaviors. Because the packer only packs the main DEX file of
the malware, the 102 sensitive behaviors refers to those in third-party libraries.
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Table 3. Sensitive behaviors before and after AppSpear’s unpacking

Packer Name | Malware Sample Permissions | Packed | Unpacked
Qihoo360 CE8668B81420CF6843DA4D2EB846C314| 6 5 52
9EC616C1BC4470EE03C4E299C3A616D6 | 16 5 76
878CF954DAE814D83BFFC5374E8BF423 |12 5 60
Bangcle 6D3D891FC3459CA2A9911D8438966B20| 8 0 84
3FF42BF94C39A9E4B2FOEA50747670B4 0 30
3F6487D723F60B4C80ACTEAB7F22BBCC |13 0 332
03CA02466849847A26A926D6605927D0 | 15 0 174
1D44FA56473B5EC27E75C734062102CA| 8 0 13
020D37EE843411AB749CADF17FC43006 |15 0 108
5F5D6F391148A4E3ACDFF3C57B8EAGEA | 10 0 100
2EO6ES5A5350EF54342D1328DF216D261 0 213
1AF5B2D290902EE0124239F4315F4B40 0 91
4DA607EDB8D7689B604C775670ESDAGF | 6 0 81
5B5674C8BA87CBC163328B27EFF24392| 11 0 230
07D9EB10587722E26BA93CB47D598641 | 7 0 65
3AC41F02613FE1436564AD1C30226416 |16 2 6
9A10E7A615589BOE949F9FFICBDFESOQE | 12 0 176
4F478E2BE20EAC9COB939FA6ADAGOCES | 6 0 30
OFA57B3D98C24EABB32C47CA3C47D38A| 6 102 89
4B9762D0B4F00E6F1A42D4AA6E984301 |21 4 109
NetQin 2C3EB7833619F35A54C91166BAAESFCD |11 5 11
C63AE255C1F3A22DAC47E8BFB400615B| 5 5 6
2A7CADAB7FC61508C70B146B496BDA12 |17 5 41
Naga 91815F6F381DB7CA793885873AFFA782| 7 0 25
Jjiami FFB08850111C1D8B061792953588CB88 | 21 0 109
A1B22DE648076B8B9515F77326D9DB13| 19 0 80
APKProtect |A58DB782081C0A41BE7556FD662F9F09 |23 21 30
67EC17C3B482AC5C1E896A2BB2C64353| 5 4 13
3094CF944D45E48201A8E8EC4C742CD0O| 2 1 14
FC272EA7TF6ASFE21ED4EADADSEF34155| 9 43 45
7BB4FB90B8C37311DC6C35AAA15F58C6| 2 1 1

After the unpacking of AppSpear, another 89 sensitive behaviors in the unpacked
DEX file are detected by our tool, which indicate the real malicious behaviors
of this malware sample.
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4.3 Home Brewed Samples

Considering the fact that some newly-born packers do not appear in the above
malware samples and also even some packers appear, they improve their code
packing strength all along, we submit our home brewed sample to 7 latest online
packing services to further evaluate the effectiveness of AppSpear. Different from
the malware in wild, we have the original DEX file of our home brewed sample
before packing, so we can manually verify those unpacked apps by comparing
their decrypted and reassembled DEX file with the original one. The content of
DEX file in each unpacked app contains the exact components and classes of the
original app, which demonstrates the effectiveness of our approach.

To thoroughly understand the detailed advanced packing techniques and
prove that AppSpear does defeat the anti-analyses defenses used by those pack-
ers, we conduct an in-depth study on verifying the results manually. We find
that due to its design principle, AppSpear unpacks the protected app in a uni-
fied way without considering certain anti-analyses defenses. For instance, some
packers hook system calls (e.g., write()) in their own process space to prevent
the DEX data from being dumped. If the source address of write() is located
in the memory scope of the mapped raw DEX data, the content will be modi-
fied by the hooking function. AppSpear evades memory dump measures through
reassembling and generating a new DEX file instead of reading the raw DEX
data, and the unpacking results are accurate. In addition, we manually check
each packer’s DEX hiding schemes to validate the correctness of our unpack-
ing strategy. We find that the DEX hiding schemes of Qiho0360, LIAPP and
Bangcle adopt a full-code unpacking style. Even the encryption algorithms of
their DEX hiding schemes are unknown to AppSpear, our DEX reassembling
approach easily collects relevant DDS and recovers exactly the same DEX as the
original one.

Ijiami. This packer modifies the DEX header to erase the magic number of
the DEX file. The measure is used to thwart memory dump based unpacking
method, because it is difficult to automatically locate the target DEX data
through the memory space of the process without the help of the magic number.
Since AppSpear focuses on the DexFile struct rather than the raw DEX data in
memory, it is not affected by this counter-measure. What’s more, Ijiami modifies
the attribute of headerSize in DEX header to a larger value, which crashes some
static analysis tools when parsing the unpacked DEX. However, AppSpear has
already considered this modification and always uses the correct value to rewrite
the reassembled DEX file in the DEX rewriting process.

Alibaba. This packer also applies modifications to the original DEX file. The
reassembled DEX file from the sample packed by Alibaba packer contains more
classes than that in the original DEX file. Some of these injected classes will
cause the failure of some static analysis tools such as dex2jar. AppSpear con-
siders these classes as anti-analysis code and resects them directly. The DEX
hiding scheme also re-maps the DexCode of every DexMethod, and modifies the
codeOff attribute in DexCode struct to a negative value, AppSpear ignores those
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modifications and directly acquires data of every DDS to reassemble a new DEX
file, thus the reassembled DEX file is accurate.

Baidu. This packer adopts an incremental packing style. It erases the DEX
header and inserts native methods as wrapper of some specific 'target’ meth-
ods (e.g., onCreate of MainActivity). The code of these methods are patched
as NOP until they are executed. When executed, the wrapping native method
before the patched method will be first executed to recover the actual bytecode.
After the invoking, the bytecode is immediately erased by the wrapping native
method after the patched method. AppSpear deals with this situation by adopt-
ing instruction level tracing and gets the real bytecode of the target method,
and repairs those patched methods using the traced information.

Dexprotector. This packer splits the original DEX file to several DEX files and
packs them. AppSpear can monitor dynamic DEX file loading in one process and
recover multiple packed DEX files. Besides the packing part of the packer, the
recovered DEX files also indicate that Dexprotector applies heavy code obfusca-
tion to the original DEX file. AppSpear focuses on hidden code unpacking instead
of code de-obfuscation. Source code obfuscation may increase the comprehending
complexity for reverse engineering, but it seldom affects the malware detection
because the obfuscation is not able to hide privilege API invoking, which directly
exposes the malicious intention. Although AppSpear is not able to de-obfuscate
this DEX file (de-obfuscation is out of our work’s scope), the multiple unpacked
DEX files still contain all bytecode information of the original app and are ade-
quate to a later program analysis or malware detection.

5 Discussion

AppSpear is based on dynamic analysis, which means it would suffer from the
code coverage issue. If a method is not invoked during runtime, packers would not
decrypt the bytecode of this method, then AppSpear can not recover this part
of code. Fortunately, AppSpear is deployed on real devices and tries to trigger
the hidden methods as much as possible, which can mitigate this shortcoming.
From the other side, it is less meaningful for packers to hide a malicious method
that is seldom invoked during runtime. From the results of our experiment, we
find out that most hidden methods locate on entry point classes or can be easily
triggered.

Malware can employ various anti-analysis techniques for emulator or VM
evasion [18]. It is feasible that packers can use similar ways to detect AppS-
pear and then hide the decrypting procedure to defeat our unpacking approach.
They can utilize some code features or fingerprint of AppSpear to avoid being
analyzed by AppSpear. To thwart such evasion, AppSpear can also use similar
anti-detection measures as emulator evading detection proposed in [14].

Besides commercial Android packers, there also exist some home brew packers
and some malware may use them to protect the code. Although the methodology
of our proposed approach is universal on monitoring and unpacking most kinds
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of DEX encryption schemes, due to the lack of sample for testing, we can not
guarantee that AppSpear could handle those home brew packers perfectly. We
leave this as future work. Particularly, some advanced packers transform byte-
code into obfuscated native code executables on Android. AppSpear can not
de-obfuscate native code obfuscation. Packers may even pack the native code in
original APKs even though this kind of code packing technique is still not preva-
lent on Android. This is one of the limitations of our work and it is possible to
be addressed in future with advanced de-obfuscation strategy.

6 Related Work

The topic of code packing have been thoroughly studied in the literature, and
several solutions have been proposed for code unpacking [13]. Pedrero et al. [26]
present a very comprehensive study on commodity runtime code packers. Their
work studied the runtime complexity of packers and evaluated on both off-the-
shelf packers and custom packed binaries on desktop computer systems. On the
commodity desktop system, a series of automatic unpacking approaches and
tools have been proposed. Polyunpack [20] performs automatic unpacking by
emulating the execution of the program and monitoring all memory writes and
instruction fetches, and considers all instructions fetched from previously written
memory locations to be successfully unpacked. Omniunpack [16] is a real-time
unpacker that performs unpacking by looking for written-then-execute pattern.
Renovo [15] also uses the written-then-execute pattern to perform the unpack-
ing. It instruments the execution of the binary in an emulator and traces the
execution at instruction-level. Pandoras Bochs [9] is also an emulator based
automatic malware unpacking tool, which uses the full system emulator bochs
as its engine. Eureka [22] uses coarse-grained NTDLL system call monitoring
for automated malware unpacking, is only available for Windows packers. These
unpacking approaches and tools mainly concern about packers of desktop plat-
forms. Compared with classic Windows and Linux code packers, Android packers
are more complex because they involve both native code and Dalvik bytecode,
which means a packer should consider both aspects and keep the balance between
protection strength and stability. Meanwhile, the analysis tools (e.g., emulators
or code instrumentation tools) on Android platform are less powerful. To the
best of our knowledge, our work is the first one to study Android packers sys-
tematically, and can handle every available commercial packer.

Before our work, there was a range of summarization work that introduces the
feature and anti-analysis technique of certain Android packers. Strazzere intro-
duced anti static analysis and anti dynamic analysis code protection techniques
in [23,24] separately. Detecting emulator is also an important anti-analysis mea-
sure of many packers and is thoroughly discussed in [27]. However, only a few
work discuss the bytecode encryption issue in a generic perspective. As far as we
know, current bytecode decryption techniques or tools either directly copy DEX
data in memory, which is not feasible for unpacking state-of-the-art Android
packers, or rely on encryption algorithm reverse engineering, which involves sub-
stantial manual efforts. The main shortcoming of many unpacking approaches
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is that they heavily rely on the specific memory dump based methodology. For
instance, Park [17] leverages wait-for-debug feature of Android platform to cir-
cumvent anti-debugging and then performs a memory dump based unpacking.
Yu [28] and Strazzere [25] make some assumptions of the packer’s features and
leverage these features to locate bytecode, which are already unavailable due to
the evolution of the packer. DexHunter [29] mainly focuses on how to locate and
dump the DEX in memory. Our proposed DEX reassembling technique settles
this deficiency and leads to a more universal unpacking.

The ART runtime has been introduced since Android 4.4.2 to support a
more efficient app execution. Although AppSpear is based on the Dalvik VM of
Android and focuses on DEX reassembling, which means it is not compatible
for those Android versions without Dalvik VM, all apps can also be executed on
Dalvik VM even though new ART runtime is supported because of the backward
compatibility requirement, So our approach is still effective for a expected long
period.

Android malware detection is an active research area and many methods [7,
10,12,19,30] have been proposed to address the large-scale malware analysis
issue. However, seldom work considers the code packing issue. Our work is a
solution to enhance current malware analysis. The unpacked APK from App-
Spear can help program analysis tools, especially those static analysis tools,
perform a more accurate malware detection.

7 Conclusion

This paper describes a systematic study of code packed Android malware. Com-
mercial Android packers are analyzed and relevant anti-analysis techniques are
summarized. An investigation of 37,688 Android malware samples is then con-
ducted and 490 code packed apps are analyzed with the help of our proposed
AppSpear, an automated code unpacking system. AppSpear employs a novel
bytecode decrypting and DEX reassembling approach to replace traditional man-
ual analysis and memory dump based unpacking. Experiments demonstrate that
our proposed AppSpear system is able to unpack most malware samples pro-
tected by popular commercial Android packers, and it is expected to become an
essential supplementary process of current Android malware detection.
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