
SymSem: Symbolic Execution with Time
Stamps for Deobfuscation

Huayi Li(B), Yuanyuan Zhan, Wang Jianqiang, and Dawu Gu

Shanghai Jiao Tong University, Shanghai, China
lihuayi sjtu@outlook.com, zhang-yy@cs.sjtu.edu.cn, wjq.sec@gmail.com,

dwgu@sjtu.edu.cn

Abstract. Code virtualization technique obfuscates programs by trans-
forming original code to self-defined bytecode in a different instruction
architecture. It is widely used in obfuscating malware for its ability to
render normal analysis ineffective. Using symbolic execution to assist in
deobfuscating such programs turned to be a trend in recent research.
However, we found many challenges that may lead to semantic confusion
in previous symbolic execution technique, and proposed a novel sym-
bolic execution technique enhanced by time stamps to tackle these issues.
For evaluation, we implemented it as a prototype of SymSem and deob-
fuscated programs protected by popular virtual machines. The results
indicate that our method is able to accurately recover the semantics of
obfuscated function trace.

Keywords: Deobfuscation · Virtualization obfuscation · Symbolic
execution · Trace rewriting

1 Introduction

Code protection techniques help software writers protect their copyright, these
techniques also become weapons against malware analysis. Popular code protec-
tion techniques includes control flow flattering, junk code, string encryption and
code virtualization. Among all the developed code protection techniques, code
virtualization, also known as VM-based code obfuscation is one of the most
practical and effective code obfuscation techniques for its ability to defeat unau-
thorized code analysis in either static or dynamic manners. It is also empowered
by combining itself with other techniques.

The key idea of VM-based obfuscation is transforming the instruction set of
the original program to another one with semantic invariance and embedding
the obfuscated program with an emulator to execute the generated code. While
each VM-based code obfuscator realizes its own instruction set and emulator,
modern virtual machines still can be divided into two main types of realizations.

One uses a dispatcher-handler model, whose emulator can be clearly divided
into two components. The main component, dispatcher, reads one instruction

c© Springer Nature Switzerland AG 2020
Z. Liu and M. Yung (Eds.): Inscrypt 2019, LNCS 12020, pp. 225–245, 2020.
https://doi.org/10.1007/978-3-030-42921-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42921-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-42921-8_13

226 H. Li et al.

from the code area and decodes its operation type. Then it picks up a corre-
sponding handler to perform the code-specific operation, which may add two
integers or perform memory operation. For example, VMProtect 3.09 [4] applies
its emulator with a few dispatchers with handler tables, each of them contains
pointers of hundreds of handlers.

The other main type of virtual machines apply the direct-threading model.
These virtual machines eliminate the dispatcher, which is vulnerable in reverse
engineer. Instead, these virtual machines enhance the original handlers by
append decoding functionality at the end, whose logic can be costume designed,
thus enabling the virtual machine to further obfuscate its control flow features.
Recently, many commercial code obfuscators such as VMProtect [4], Themida [3],
Code Virtualizer [1] have all adapted direct threading model.

The demands to analyze the VM-based code obfuscation increase due to
its growing popularity in malware protection. To deobfuscate malware pro-
tected by code virtualization technologies, researchers have developed many
techniques aiming for automatic analysis. For example, VMAttack [11] detects
the dispatcher-handler loop and uses folding optimization to recognize impor-
tant instructions in the virtual machine code. VMHunt [18] applies data flow
analysis on the trace of obfuscated program and identify the entries and exits
in the trace, then it uses symbolic execution technologies to generate a formula
to represent the trace’s semantics. Liang [12] developed a method of trace sim-
plification based symbolic execution and compilation optimization. These works
all based themselves on dynamic analysis, including data flow analysis, taint
analysis and symbolic execution.

However, we found that former works used a simple model when applying
symbolic execution, this model may have a few inputs, but with only one output.
While practical code in virtual machines comply with a different model consid-
ering complicated semantic meanings. First, a snippet of virtual machine code
may have multiple inputs and outputs. These outputs are physically separated
thus can not be represented in one expression. For example, a handler may read
a bundle of inputs from memory, do some calculation and save the results to dif-
ferent registers and memory addresses. What’s more, many complex situations
which would cause semantic confusions have been omitted. A handler with two
memory inputs may have two symbolic values both point to the same address
under specific conditions. Improper treatment of these two values may cause seri-
ous semantic confusions for analyst and lead to different semantic comprehension
in recovering code.

We found that, besides explicit dependencies, instructions and its generated
values have implicit relationship that make a difference to the output semantics
in symbolic execution. Any misconduct in symbolic execution may lead to loss of
information needed for resolving semantic confusions in code recovery. As these
implicit relationships are conducted under time sequences, we further noticed
that time stamps is an important indicator of the relationship.

In this paper, we systematically study the challenges and develop a new app-
roach in symbolic executions and code recovery. First, we elaborate the challenges

SymSem: Symbolic Execution with Time Stamps for Deobfuscation 227

when applying a more practical semantic model in symbolic execution. These
challenges we found are caused by misconducts when dealing with multiple sym-
bolic expressions. Then, we propose a new kind of symbolic execution technique
enhanced with time stamp, which efficiently complements the missing informa-
tion in original symbolic execution methods and help tackle the challenges we
found. Finally, we implement a prototype of our symbolic execution method,
SymSem. SymSem takes an obfuscated program trace as input, extracts the
virtual machine code from the trace and rewrites these code by symbolic execu-
tion and recovering code from symbolic expressions. We will illustrate how our
implementations can be used in trace optimization and reverse engineer.

For evaluation, we implement a prototype of SymSem based on symbolic
execution with time stamps. We pick up test cases from famous algorithms’
realizations and open-source projects, including binary search, matrix multi-
ply, tcp checksum, rc4 encryption and bzip2.14. We obfuscate these programs
with commercial code virtualization obfuscators like VMProtect and Themida.
Then, we trace the obfuscated program and rewrite the obfuscated function.
The rewritten traces have the same semantic meaning when executing in the
obfuscated program. Moreover, the trace length is reduced to 12.5% to 36.68%
of the original. Our evaluation also shows that SymSem can be easily scaled to
large-size traces for two reasons. First, the time complexity of our prototype is
more related with the handler numbers and their length, not the trace length
of obfuscated function. Also, SymSem are designed for parallelism as symbolic
execution procedures of different handlers can be done concurrently.

This paper makes the following contributions.

1. We found a series of problems related to trace rewriting by means of symbolic
execution in practical situations.

2. We designed a new symbolic execution method to precisely and accurately
extract the semantics of obfuscated program. Our symbolic execution with
time stamps is able to tackle the difficulties related to extracting semantics
through symbolic execution.

3. Based on our new symbolic execution method, we designed a prototype of
SymSem and we evaluate it in different commercial virtual machines. The
result shows that it is able to rewrite the trace of obfuscated function.

The rest of the paper is organized as follows. Section 2 points out the limi-
tations in symbolic execution and the challenges for this work. Sections 3 and 4
describes the design of SymSem. The implementation and performance evalua-
tion on SymSem is in Sects. 5 and 6, respectively. Section 7 lists the related works.
Sections 8 and 9 discuss the limitation in our work and conclude the paper.

2 Challenges

Symbolic execution has been used in deobfucating in many previous work due
to its ability of forming corresponding relationship between inputs and outputs.
The results of symbolic execution, a set of symbolic expressions,which represents

228 H. Li et al.

the relationship between program inputs and outputs, have been not only the
final output of deobfuscation analysis [18], but also compiled to optimized code
with better readability [12]. Unfortunately, we first found previous work made
an impractical assumption that target programs with only one output, thus only
one symbolic expression was needed to represent the semantics of target code.
This assumption violates the model of practical programs, as a program may
have multiple separate input sources and outputs.

We then found that current form of symbolic expressions are unable to con-
tain the full semantic information of program trace thus may cause semantic con-
fusions. Meanwhile, generating compilable code from multiple symbolic expres-
sions have many challenges with explicit and implicit data dependence.

In this chapter, we will describe the challenges we encountered when rewriting
program trace with multiple outputs. These challenges are omitted by previous
work. Then we will unveil why current symbolic expressions may cause confu-
sions.

2.1 Challenges with Multiple Symbolic Expressions

We use the example below to illustrate one of the challenges when representing
the semantics of program trace using current symbolic expression.

1 mov ecx , dword ptr [eax+4]
2 add dword ptr [eax+4] , 4

Symbolic executing two lines of code above will generate two expressions
below.

ecx : dword ptr [eax + 4]
dword ptr [eax + 4] : dword ptr [eax + 4] + 4

It is obvious that the value in register ecx relies on the value saved in [eax+4],
thus a read after write hazard may arise when rewriting procedure fails to pre-
serve the appropriate sequence of code generation based on symbolic expressions.
In this case, read from dword address [eax+4] must precede the writing operation
of the same address. Read after write may lead to different semantic meanings.

Usually, the first idea of solving this hazard follows the method of construct-
ing a graph of dependence. On this graph, the code generation for expression
ecx relies on the read operation of the initial value of address [eax+4].

2.2 Challenges with Alias Symbolic Values

In addition to the hazards above, there is another challenge which may cause
semantic confusion when using previous symbolic execution method. We call it
alias, which results from the inability of judging the equality of two symbolic
values in outcome expressions.

SymSem: Symbolic Execution with Time Stamps for Deobfuscation 229

1 mov dword ptr [eax+4] , 0 xbeefdead
2 mov dword ptr [ebx+4] , 0 xdeadbeef
3 mov ecx , dword ptr [edx]

Here we illustrate the alias problem by the code above. We can easily enu-
merate the symbolic expressions generated as below.

ecx : dword ptr [edx]
dword ptr [eax + 4] : 0xbeefdead

dword ptr [ebx + 4] : 0xdeadbeef

Based on these expressions, we are unable to judge that if edx equals to
eax+4, neither the case if eax equals to ebx. When edx equals to eax+4, the first
expression could also be rewrited as ecx : 0xbeefdead. Meanwhile, the rewriting
procedure may decide to first deal with the first expression. The generated code
would simply move the initial value stored in address edx to register ecx, which
is contrary to the true sequence in the original code. This results in a new kind
of hazard that we call write after write hazard and the situation also exists when
edx equals to eax.

The case above shows that different sequences of code generation for expres-
sions with possible alias value may generate code with different semantic mean-
ings. In addition, the problem could not be solved by dependence graphs as
they are limited by implicit dependence relationship. Meanwhile, these relation-
ships, which are originally organized by time sequence, have been eliminated in
the symbolic expressions above. For those who want to understand the state of
program by these expressions, confusions are inevitable.

3 Symbolic Execution with Time Stamps

As previous form of symbolic expressions are unable to contain all informa-
tion necessary for generating compilable code. We implemented a new kind of
symbolic execution method named symbolic execution with time stamps. As is
indicated by its name, symbolic execution with time stamps tags every symbol
value with a time stamp when they are created. These time stamps demonstrate
the sequence of IR generation when needed. Here we describe how time stamps
help symbolic execution tackle the challenges referred in Sect. 2. In Sect. 4.3 we
will further elaborate our methods by an detailed example.

3.1 How Time Stamp Tackles Read After Write Hazards

First we describe how time stamps help tackle the challenge of read after write
hazards. Though this challenge can also be tackled by a dependence graph, time
stamp is a more natural method with generality.

We take the first case in the Sect. 2.1 as an example. The code first saves
the value of address [eax+4] to ecx. Then it updates value of address [eax+4]

230 H. Li et al.

with a new value. Under symbolic execution with time stamps, the value in the
register ecx will be tagged with time stamp 0, as it is born in the operation of
the first instruction. Similarly, the newly updated value of address [eax+4] will
be tagged with time stamp 1.

When it comes to code generation, the procedure will first deal with values
tagged with lower time stamps. In this case it corresponds to the symbolic value
in ecx. It will read a value from address [eax+4]. Here of course the read operation
will get the right value, instead of one has been updated. Then the procedure
deals with the value tagged with time stamp 1. The problem of read after write
hazards is solved naturally.

3.2 How Time Stamp Tackles Alias Values

Time stamps can also help tackle the challenge of alias values, which is invisible
in dependence graphs. Still, we take the case in Sect. 2.2 as an example. It is
multifarious to enumerate all possible alias cases in the example. Not to mention
generating conditions and constraints of each alias cases.

However, under symbolic execution with time stamps, the value in address
[eax+4], [ebx+4] and ecx is respectively tagged with time stamp 0,1 and 2. In
the following IR generation procedure, if we follow the sequence of time stamps,
the value in the address [eax+4] will be first updated. Then it comes to the value
in address [ebx+4] and ecx. Never mind what alias cases may happen, the IR
generation procedure follows the correct sequence and avoids any conflicts. So
we can apply the same solution to tackle the alias challenge.

4 Design

4.1 Overview

We present a new method of symbolic execution and implemented it in a new
program trace analysis system named SymSem, which is used to analyze traces
of programs obfuscated by code virtualization technique. In this chapter we will
illustrate the overview of SymSem.

SymSem is a system aiming to recover the semantics of the trace obfuscated
by code virtualization technique. It takes the trace as input and outputs the
LLVM IR of the trace, which is both readable and compilable. Finally, SymSem
compiles the IR to generate assembly code for further evaluation. Figure 1 depicts
the whole architecture of SymSem, including three kernel components which
would be described in detail in the following sections.

1. VM Architecture analysis. For a program protected by code virtualization, we
first run it and record the trace. We implemented an analysis method based
on execution rate to extract virtual machine entries, exits and all handlers in
the trace.

SymSem: Symbolic Execution with Time Stamps for Deobfuscation 231

2. Symbolic execution with time stamps. We assume that the semantic meanings
of the program can be represented by a set of expressions between inputs and
outputs. Based on this assumption, the semantic meaning of obfuscated func-
tion can be achieved by connecting all the semantic expressions of handlers
in the trace. Here we use a new kind of symbolic execution technology named
symbolic execution with time stamps to extract semantic representation of
all handlers, VM entries and exits in the trace.

3. Generating LLVM IR. SymSem generates IR for LLVM compiler based on
the results of symbolic execution. These IR can be used to generate code or
symbolic representation of the whole trace.

VM Architecture analysis Symbolic execution with time-stamp Generating LLVM IR

0101
1010

bianry

mov eax ,1

call 401000
push ebp

ret

trace

Handler1

Handler2

Handler3

AX:S1|
S1=0x1234

@"main"()
{
mainentry:
 call Hdl1;

}

VM_Entry
Handler1
Handler2
Handler3

Handler1
VM_Exit

0101
1010

Rewrited
Func

handlers
Exprs LLVM IR

Trace Arch

IR generate

Symbolic
 execution IR generate

Trace
Analysis

Trace
Analysis

Complie

Trace logging

Fig. 1. SymSem architecture

4.2 VM Architecture Analysis

As described in Sect. 4.1, the VM architecture analysis is designed for extract-
ing virtual machine code from program trace. These code contain handlers and
information about how to reorganize the generated intermediate representation.

Here we use an easily implemented method to analyze the program trace.
We also assume that there does exist at least one virtual machine in the trace.
Our methods is based on two phenomenons we observed below:

1. For a specific program protected by code virtualization, all virtual machine
handlers have the same type tail jump, such as “jmp 0x434343” or “jmp
register”.

2. In the program trace, those basic blocks which are not in any loop but belong
to handlers have more chance to be executed for multiple times when consid-
ering a mount of continues instructions.

232 H. Li et al.

Method Overview. Our method can be simply described as two steps. First,
screen out possible basic blocks belong to handlers based on execution rate.
Then, make further analysis based on control flow and data flow. These analyses
will finally help us mark all the basic blocks as “VM code” or “Non-VM code”.

Method Details. We will describe the details of our method in this section.
SymSem first runs the program and trace all the executed instructions once.
Also, for every basic blocks to be executed, SymSem records the address of its
first instruction and the value of stack register. These two kinds of records are
saved separately in two files.

We use the first trace file, which contains traces of all instructions, to calcu-
late the occurrence frequencies of different unconditional jump instructions. Like
what is shown in Fig. 2(a), we rank these instructions and assume those with
higher occurrence frequency are candidates of tail jump instructions of handlers.

Fig. 2. Extract tail jmps & detect handlers

Further analysis was based on control flow. We assume that the code before
a handler either belongs to another handler or the VM entry. Similarly, the code
after a handler is another handler or the VM exit. As is shown in Fig. 2(b), for
every jump instructions we have screened out, we trace backwards to another
jump instruction. The code between the two tagged jump instructions must be
a handler or includes one exit, one entry and some Non-VM code. We use some
data flow features to distinguish between this two situations. In the first case,
those code between two tagged jump instructions are tagged as a handler.

Finally, SymSem runs data flow analysis to recognize the entries and exits of
virtual machine. The VM entries and exits have some specific data flow features
which are easily recognizable. One of them is that all VM entries save the general
registers to some region of the memory. In this way we distinguish the code
between entry and exit as VM code and the other as Non-VM code.

SymSem: Symbolic Execution with Time Stamps for Deobfuscation 233

4.3 Symbolic Execution with Time Stamps

The components of symbolic execution and IR generating is the key of SymSem.
We use symbolic execution technique we first presented in Sect. 3. In this section
we elaborate our symbolic execution method in detail by an example.

A Detailed Example to Illustrate Our Method. Here we use an example
to elaborate how symbolic execution works on actual code. The case here is a
simplification of code we actually encountered.

1 mov ecx , dword ptr [eax+0xc]
2 add dword ptr [eax+0xc] , 0x4
3 mov dword ptr [ebx+0xc] , 0 xdeadbeef
4 mov edx , dword ptr [edx]

This code fragment first reads a symbolic value from address [eax+0xc] to
ecx. Then it adds the value in memory address eax+0xc] with 4, writes a concrete
value to address [ebx+0xc]. Finally, it reads a symbolic value from address [edx]
to register edx.

It is clear that eax and ebx can be two alias values and there is no chance
to eliminate the alias simply based on the code fragment. Under that condition,
the address [eax+0xc] and [ebx+0xc] may have a write after write hazard. Also,
there is a read after write hazard with address [eax+0xc]. The generated code
must first read the value in memory address [eax+0xc], then write a new value
to the same address. What makes things more difficult is that edx may equals
to eax+0xc or ebx+0xc, making the situation more complicated.

Symbol Definition. We use the definitions below to elaborate the symbols in
the following.

Definition 1. There are two types of value in symbolic execution, concrete value
and symbolic value. We use Cm

n Sm
n to represent them. Here, m represents the

width of the value. And, n is a unique id of every value. For example, S32
0

represents a symbolic value of 32 bit size and its id is 0.

Definition 2. We use symbol | to represent the bind of values. For example,
C8

1 |C8
1=0x12 represents a concrete value of 0x12, while S32

1 |S32
1 =S32

0
represents a

symbolic value equal to S32
0 .

Definition 3. We use symbol TV = t to indicate the time stamp of value V. The
time stamp of [V1, V2, . . . , Vn] is the newest one of V1, V2, . . . , Vn. for simplicity,
time stamps start with 0.

Definition 4. We use a set of expressions like Pos1 : V1, Pos2 : V2, ... to represent
the state of system. EAX : C32

0 |C32
0 =0x12345678 means the value in register eax is

0x12345678.

234 H. Li et al.

Procedure of Symbolic Execution with Time Stamps. We assume the
initial state of the system can be represented as mem[eax+0xc] : S32

0 ,mem[ebx+
0xc] : S32

1 ,mem[edx] : S32
2

Now we elaborate the procedure of symbolic execution with time stamps.
After the symbolic execution of the first instruction, register ecx was written
with a new symbol value, which equals to the value saved in memory address
[eax+0xc]. As it was the first instruction, the new created value will be tagged
with time-stamp 0.

ecx : S32
3 |S32

3 =S32
0 ,T

S32
3

=0

After the second instruction was executed, the value in the memory address
[eax+0xc] have been updated, and the time stamp of the new value is 1.

mem[eax + 0xc] : S32
4 |S32

4 =S32
0 +4,T

S32
4

=1

The third instruction sets address [ebx+0xc] with a concrete value 0xdead-
beef. Its time stamps is of course 2.

mem[ebx + 0xc] : C32
0 |C32

0 =0xdeadbeef,T
C32
0 =2

When the final instruction is executed, register edx will be updated with a
new value from address [edx]. This operation creates implicit data dependencies
with edx and preceding address values. Here we can enumerate the final state of
the symbolic execution.

ecx : S32
3 |S32

3 =S32
0 ,T

S32
3

=0

mem[eax + 0xc] : S32
4 |S32

4 =S32
0 +4,T

S32
4

=1

mem[ebx + 0xc] : C32
0 |C32

0 =0xdeadbeef,T
C32
0 =2

mem[edx] : S32
5 |S32

5 =S32
2 ,T

S32
5

=3

If we observe the final state of the code, we will find that all values have been
tagged with a time stamp after symbolic execution. When generating corre-
sponding operation in intermediate representations, we can avoid the confusion
of alias as well as the read after write hazard or write after write hazard by
following the sequence of time stamps.

4.4 IR Generation and Compilation

The method of IR generation includes two steps. The first step is generating
IR for each handler extracted from the trace. All these semantic representation
have multiple inputs and outputs. Then these IR will be concatenated to form
the semantic representation of the whole trace.

SymSem: Symbolic Execution with Time Stamps for Deobfuscation 235

Algorithm 1. IR generate algorithm for handlers
Input: Expression set Φ
Output: LLVM IR of Code
Function Init Dependence Graph (Expression set Φ)

Dependence graph G ← ∅
for each Expression E in Expression set do

for each Expression ES in SubExpression(E) do
add edge (ES ← E) to G

if value E needs to be written to address addr then
add edge (addr ← E) to G

return G

Function Generate IR(Expression set Φ)
Dependence graph G ← Init Dependence Graph(Φ)
Q ← empty Queue
for each timestamp t ∈ Timeline do

Expression set θ ← ⋃
expressions E with TE = t

if θ = ∅ then
continue

for each Expression E ∈ θ do
r ← BuildIR(E)

Remove edges in G whose source is E
if value E needs to be written to address addr then

append (r,E,addr) to Q

Loop ← True
while Loop do

Loop ← False
for each IR r,Expression E,address addr in Q do

if there is no edge point to E in Graph G then
Build IR For Store (r,addr)
Loop ← True
remove(r,E,addr) in Q

Generate IR for Handlers. SymSem uses LLVM APIs to build two basic
function for IR generation, BuildIR and Build IR For Store. The former takes
a symbolic expression, read necessary data from memory and registers, do the
arithmetic operation required to generate corresponding representation. While,
Build IR For Store takes output of the former function and writes the result to
target register of memory.

SymSem utilizes the two functions above and time-stamp information pro-
vided by previous phases to generate IR for handlers. It invokes the BuildIR
function under the sequence of time-stamps. The generated representations will
be put in a queue, waiting for writing to target until conditions satisfied.

In consideration of saving physical registers and memory space, SymSem uses
a dependence graph here instead of time stamps. This also accelerates the writing

236 H. Li et al.

procedure. The algorithm used to generator LLVM IR correspond to handlers
can be described in Algorithm 1.

Here we take the code in Sect. 4.3 to illustrate how our algorithm works. The
first step of the algorithm is to generate representation for S32

3 , as it is the only
one which is created at time zero. The procedure will read a double word value
from memory [eax+0xc]. Then the algorithm deals with S32

4 . The value will be
immediately written to memory as there is no value explicitly dependent on it.
Next, the same memory update can be applied to address [ebx+0xc] for the same
reason. Finally, the value S32

5 can be written to register edx.

Generate IR for Virtual Machine Trace. Having generated the IR of differ-
ent handlers, the key of further generating accurate IR of the obfuscated program
trace is to efficiently organize the IR of handlers.Here we define semantics of each
handler as a function. Then the semantics of virtual machine trace can be rep-
resented by a sequence of function invokes. As the semantic representation is in
the form of LLVM IR, the result can be conveniently compiled into executable
code.

5 Implementation

We realized a prototype named SymSem for our methods and use a custom PIN
tool which includes 162 lines of C code as trace recorder. The symbolic execution
engine is based on manticore [2], most of the changes we made on it is meant
to add time-stamp in its CPU emulation module and to analyze the result of
symbolic execution. Our tool contains 25009 lines of code, 8545 lines of which are
newly added to the original framework, including 2237 lines related to symbolic
execution.

The PIN tool used in evaluation has about 225 lines of C code. Its responsi-
bility is to load the rewritten code into memory and execute.

An interesting result we discovered is that not all LLVM passes could be
implemented on our intermediate representation. So we have to use r0 opti-
mization of opt tools with selected passes including “-reassociate”, “-adce”,
“-mem2reg” which will not lead to semantic error. We found most errors those
unfit passes incurred is due to they made a false assumption of stack usage of
our code.

6 Evaluation

In this chapter we will evaluate our method on different code virtualization pro-
tection technologies. Our evaluation focus on three questions. (1) Can SymSem
correctly reverse engineer the architecture of the virtual machine from the obfus-
cated trace? (2) Is SymSem able to recover the semantics of obfuscated program
trace accurately? (3) How long does SymSem cost and how much can parallelism
help the analysis?

SymSem: Symbolic Execution with Time Stamps for Deobfuscation 237

6.1 Experimental Framework

We set up our experiment on a Windows XP virtual machine. All the tested pro-
grams were compiled by visual studio 2008 on the same machine. The remaining
analysis were conducted on a server with Intel Xeon Gold 5122 and 128G of
RAM, which runs Ubuntu 18.04.

We choose our test programs based on five algorithms including binary ser-
ach, matrix multiply, tcp checksum, rc4 encryption and bzip2 compression. We
choose proper implementations for these algorithms from Github and other open
sources. Two famous commercial code virtualizer VMProtect 3.09 and Themida
2.4.2 are used to obfuscate these programs. As required by the code virtualizers,
we only obfuscate the function of chosen algorithms and exclude other code. For
example, when dealing with the program of rc4 encryption, we only obfuscated
the encryption function.

For all tested programs, we separately constructed inputs to make sure that
they call the obfuscated function and exit normally. For example, the input of
rc4 encryption is a private key file and a message file. We use PIN tools to trace
the obfuscated programs. The tracer records not only instructions, but also their
addresses and specific register values. We only trace the code which belong to the
program itself and exclude the third party library. The following Table 1 shows
statistics of the tested program traces.

As is show in Table 1, we count the trace length by its lines, the average
length of handlers in the trace and if the data in virtual machine is encrypted.

Table 1. Tested programs. This table shows the characters of the tested programs.
“Handler avglen” means the average length of handlers appeared in the trace. We set
the label “encrypted” true if the data computing in the trace is encrypted.

Name Length
of trace

Length of trace
(obfuscated)

Handler
avglen

Encrypted

VMProtect binary search 31 18328 17.45 False

matrix multiply 151 60105 17.78 False

tcp checksum 174 75041 19.25 False

rc4 1484 395214 16.82 False

bzip2 244345 292161 19.61 False

Themida binary search 31 121417 454.33 True

matrix multiply 151 166234 384.69 True

tcp checksum 174 249736 516.98 True

rc4 1484 1175319 453.65 True

bzip2 244345 986447 271.59 True

As referred by previous work, modern commercial virtual machines all apply
redundant handlers and the state of the art also encrypted its computing data.
In our test experiments, VMProtect and Themida apply two different design
philosophy. The former implements RISC-like ISA while the latter is CISC-like.

238 H. Li et al.

After being obfuscated by code virtualization, the function trace also expands
to hundreds of instructions.

6.2 Our Tool Can Accurately Analyse the Arch of VM Trace

In this section we evaluate SymSem by its ability to recognize VM code. First,
we use SymSem to find out handlers appeared in the trace, we compared them
with the results of manual work. Then we use our tool to find out possible VM
entries and exits, which were also compared with those we manually found.

SymSem tags basic blocks with three types, including “handler”, “dispatcher”
and “Non-VM”. The former two types belong to virtual machines while the latter
is not our rewriting target. We recognize VM entries and exits as special handlers.
As one handler may have different control flow which leads to different semantic
meaning, our tool specifically identified these cases.

Table 2. Handlers entries and exits found. This table lists the number of handlers
found in the trace by manual work and automatic analysis. The word “hdl” is the
shortcut of handler. Here “count once” means that different handlers with the same
start address only count once. “(CF ≥ 1)” indicates that handlers have more than one
control flow cases. The meaning of “(CF ≥ 2)” are similar.

Name hdl (manually) hdl (count once) hdl (CF≥ 1) (CF> 2) entry & exit

VMProtect binary search 43 43 43 0 1

matrix multiply 50 50 50 0 1

tcp checksum 52 52 52 0 1

rc4 67 67 67 0 1

bzip2 111 111 110 1 20

Themida binary search 109 109 156 30 3

matrix multiply 98 98 137 25 1

tcp checksum 117 117 181 39 3

rc4 113 113 158 36 1

bzip2 150 150 255 46 25

As is shown in Table 2, the handler number is at most 150 in the trace and
SymSem correctly identified all handlers in the trace. It also identified many
handlers which have same start address but different control flows. Programs
of bzip2 and binary search were found to have a few virtual machines inside
the obfuscated function. The analysis output shows that between two virtual
machines are some other function calls which are not obfuscated. SymSem does
not target these code so it is necessary to recognize them.

6.3 Our Tool Can Accurately Recover the IR of vm Trace

The preceding analysis generates LLVM IR representation of the obfuscated
trace. These IR representation can be compiled to get the optimized trace. As a
correct optimized trace indicates the correctness of the generated IR representa-
tion, we use a custom PIN tool to test the correctness of the rewritten semantics.

SymSem: Symbolic Execution with Time Stamps for Deobfuscation 239

This PIN tool writes the optimized trace into a unique region of memory and
modify the PC register when the program is going to execute the origin code.

As our rewriting procedure is based on traces, test inputs must lead to the
same control flow with those in the preceding analysis. We make sure that the
test inputs lead to the same control flow with the trace file by limiting their
ranges. For example, we use files with the same length in tcp checksum and the
same key in rc4 encryption.

We use a simple fuzzer which generates inputs with the same control flow to
test the rewritten code. These inputs were also sent to the same program not
instrumented. We compared all the outputs and found that the instrumented
programs have the same outputs with those not instrumented. We treat this as
a proof of the semantic invariance of rewriting procedure. From tests above, we
made a conclusion that SymSem can generate rewritten semantics accurately.

After evaluating the semantic invariance of rewriting procedure, we also count
the length of the rewritten trace, the length of IR and how many functions in
it. Table 3 shows the statistics of the analysis result. We counted IR length by
its number of lines, the most important data is the reduction rate which points
out how much optimization SymSem made on the trace.

Table 3. Statistics of the analysis results. This table shows the statistics of the analysis
results, which including IR representation and optimized trace. The reduction rate is
calculated by comparing length of the trace in virtual machines with the length of
optimized trace.

Name IR length func in IR Optimized trace Trace in VM Reduction

VMProtect binary search 2936 143 5254 18328 28.66%

matrix multiply 4231 197 21580 60105 35.90%

tcp checksum 4534 216 27532 75041 36.68%

rc4 8649 175 110049 395214 27.84%

bzip2 151456 6195 25248 83051 30.40%

Themida binary search 19930 191 17496 119794 14.60%

matrix multiply 17951 180 24886 166234 14.97%

tcp checksum 22957 219 34151 247834 13.77%

rc4 20306 181 163747 1175868 13.92 %

bzip2 804290 8280 105776 756225 13.98%

In the table, complicated programs such as rc4 have longer trace, generated
IR and more functions in the IR files. The results also show that the reduction
rate is stable for specific obfuscators. The average reduction rate of VMProtect is
31.89% and the one of Themida is 14.24%. The gap indicates that the reduction
rate is highly dependent on the obfuscator itself.

6.4 The Overhead of Our Tool

Based on the architecture of SymSem, the whole analysis time can be divided
into three parts, the time of trace analysis, the time of symbolic execution and

240 H. Li et al.

the time used to generate IR and assembly code. In this section, we hope to
demonstrate that SymSem can analyze a program trace in an acceptable time
even for a more complicated program.

The first part of analysis is the trace analysis. Our algorithm parses the whole
trace twice. The first parse aims to get statistics of the basic blocks and control
flow information. Then the second is able to recognize the VM code, including
handlers, entries and exits. As this part of analysis time is heavily dependent
on the length of trace, what makes a difference is the analysis time of symbolic
execution and IR generation.

Here we separately tested the overhead of SymSem to generate rewritten
assembly code. The tests below was based on single process, which means it can
be further accelerated.

Table 4. Analysis overhead of single process. This table illustrates the overhead of
symbolic execution and generation of the optimized assembly code. Tags are defined as
follows: total time = the total time of symbolic execution and generation of optimized
trace, z3 = the seconds spent in ze solver, SE = symbolic execution, llc = the time spent
in LLVM compiler, executed loc = the lines of code which is symbolic executed during
the analysis.

Name total time z3 SE llc executed loc

VMProtect binary search 1m14.982s 1.548s 1m14.022s 0.960s 733

matrix multiply 2m2.686s 3.350s 1m53.162s 9.524s 889

tcp checksum 2m6.014s 3.297s 1m50.576s 15.438s 1001

rc4 12m42.455s 3.315s 2m17.785s 624.670s 1127

bzip2 4m58.226s 11.844s 4m44.088s 14.138s 2069

Themida binary search 29m4.721s 163.150s 29m0.44s 4.278s 75418

matrix multiply 11m56.508s 118.164s 11m52.812s 3.696s 56549

tcp checksum 38m5.542s 205.830s 37m58.790s 6.752s 98744

rc4 32m43.882s 225.397s 29m49.469s 174.413s 72584

bzip2 66min36.38s 283.747s 64m56.50s 99.878s 103996

Table 4 shows the analysis time, including the symbolic execution and IR
generation. The analysis spends most of the time on symbolic execution. We
study the relationship between the overhead of symbolic execution and the exe-
cuted code length. The consuming time seems to be linear correlated with the
executed length, excluding the case of bzip2. We guess the case of bzip2 is an
exception because it has more virtual machines than others to analyze, which
cost a longer time.

The other part of analysis time, which is spent on compilers to generate
assembly code is related to the length of obfuscated trace. The case of rc4 has
a great amount of encryption loop in the trace so it cost much more time to
compile. However, of these ten different test programs, the longest analysis time
is limited in 66 min. Considering the length of trace and the procedure can be
further accelerated, we think this time is acceptable.

SymSem: Symbolic Execution with Time Stamps for Deobfuscation 241

Furthermore, we tested how much can parallelism help in analysis. As
described in, the analysis time can be divided into 3 parts and the second part,
which generate LLVM IR for handlers through symbolic execution can be fully
paralleled. We tested the overhead on programs obfuscated by Themida.

The symbolic execution can be accelerated by parallelism. Here we use mul-
tiple process to accelerate the analysis. Each process separately analyzes one
handler concurrently. Then the symbolic execution result is assembled to gener-
ate IR representation and assembly code. We record the total time of generating
executable assembly code. Table 5 reveals the whole test results.

Table 5. Multiple process analysis overhead. This table illustrates the total analysis
time with multiple processes.

Name 1 process 2 processes 4 processes 8 processes

Themida binary search 23m29.353s 22m59.659s 12m0.215s 7m35.043s

matrix multiply 11m56.508s 36min54.790s 19m4.849s 11m28.323s

tcp checksum 29m36.273s 25m16.340s 13m4.776s 8m10.550s

rc4 32m43.882s 32m44.630s 24m49.204s 14m28.977s

bzip2 37min16.617s 34min15.423s 17m37.760s 11m7.583s

For simplicity, we limit the process number by exponent of two. We set the
upper bound as 8 because of physical resources limitations. In addition, for those
test cases with multiple virtual machines in the obfuscated function, we only
count the first virtual machine, as the following virtual machines may inherit
the knowledge of the preceding one, which brings additional uncertainty.

1 2 3 4 5 6 7 8

10

20

30

40

processes

an
al
ys
is

ti
m
e(
m
in
)

binary search
matrix

tcp checksum
rc4

bzip2

Fig. 3. overhead with multiple process

The Fig. 3 indicates that parallelism does reduce the whole overhead of the
analysis. The consuming time nearly comes to 35.52% of the original when using

242 H. Li et al.

8 processes at the same time. The whole consuming time decreases with more
analysis processes, but not by multiplicative inverse. We found that when using
only two processes, the consuming time may be more than using single process.
The following reasons may help to understand this phenomenon. First, par-
allelism brings additional cost with initialization and process communication.
Second, some handlers were executed more than once for reducing the cost of
communication.

We also compared the efficiency of SymSem with another deobfuscation tools
driven by symbolic execution, VMHunt. We collected data from the published
paper. We compare the average data based on 6 test cases in VMHunt and 10 in
SymSem. We mainly concern two important indexes in the symbolic execution
system. From Table 6, We find that though SymSem spends less time on each
instruction, its ability to simplify instruction before symbolic execution is not
comparable with VMHunt. The most significant reason for this is that VMHunt
also puts data dependence analysis into its extraction process before symbolic
execution.

Table 6. Efficiency comparison with VMHunt. In this table we compare the code
extraction rate and the execution time per instruction of two different tools. The aver-
age data is based on 6 test cases in VMHunt and 10 in SymSem. The tag are defined
as follows: “SE” = symbolic execution. “CE” = code extracition rates, it indicates how
much code would be extracted for symbolic execution compared to the whole trace.
“TPI”= symbolic execution time per instruction.

Name avg total trace avg SE len avg SE time CE TPI

SymSem 354000.2 41311.0 1112.725 s 11.67% 0.0269 s

VMHunt 2613690.1 2011.3 339 s 0.076953% 0.1685 s

7 Related Works

Deobfuscation of Virtualized Code. The deobfuscation of programs pro-
tected by code virtualization has always been a difficult problem. Since Rolles
proposed a deobfuscating method based on virtual machine architecture analy-
sis [15], most of the automatic methods aim at virtual machines with dispatcher-
handler model [11,12,15,16], one of the which is VMAttack [11]. It applies many
heuristic rules to pair handlers with translated mnemonic.

Another type of deobfuscating method aims to sift important instructions
from the program trace. The widely used approaches includes dataflow analysis,
control flow analysis and taint analysis. These methods have an advantage that
they do not rely on any assumptions of virtual machine architectures. One of
the representative work is from Coogan [10], which uses equational reasoning
to analyze instructions related to system calls. VMHunt [18] and Bin Sim [14]

SymSem: Symbolic Execution with Time Stamps for Deobfuscation 243

are similar for applying backward slicing based on different sources. Further-
more, VMHunt also use symbolic execution to do semantic analysis on sliced
instructions.

Symbolic Execution of Code. Symbolic execution has been one of the fun-
damental technologies in automatic analysis [5,19]. Assisted by modern power-
ful SMT solver, symbolic execution abstract the target problem as constraint
solving, made great help in automatic exploit generation [6,9], control flow anal-
ysis [7]. Also, it is also widely used in deobfuscation. [12,18]. Automatic reverse
engineer tools take advantage of symbolic execution to deal with branch condi-
tions, represent semantic results or further generate optimized code for analysis.

However, as we have pointed out, symbolic execution also suffers from alias
and other problems, which may cause semantic confusion. We first point out
these problems and provide symbolic execution with time stamps to solve them.

Rewrite of Obfuscated Code. Binary rewriting is an kernel techniques in
security application area. It is widely used in profiling, code optimization, vul-
nerability detection. Our work uses a dynamic rewriting approach [13] to eval-
uate the correctness of trace rewriting. The same methods are also applied in
evaluation of many other binary rewriting tools [8,17].

8 Discussion

We now address possible limitations of our method here. First, SymSem is based
on dynamic analysis. As its analysis output is limited by the input trace, it is
unable to recover the whole semantics of the original function. Second, symbolic
execution method is unable to deal with those self modify code. These code have
continuously varying semantics which is unable to represented by simply a set
of symbolic expressions.

9 Conclusion

Symbolic execution has become a popular technique widely applied in fuzzing,
vulnerability exploitation and reverse analysis. We present a new kind of sym-
bolic execution technique which can accurately generate expressions that repre-
sent the full semantics of the code. In this symbolic execution technique, time
stamps play a important role in eliminating possible hazards and alias issues.
Also, by realizing a prototype named SymSem, we prove this technique can be
further implemented to assist reverse engineer of programs obfuscated by code
virtualization. We expect further costume compilation optimization will recover
the original semantics of the unobfuscated program.

Acknowledgments. This work was supported by the General Program of National
Natural Science Foundation of China (GrantNo. 61872237).

244 H. Li et al.

References

1. Code virtualizer. https://www.oreans.com/codevirtualizer.php. Accessed 4 July
2019

2. Manticore. https://github.com/trailofbits/manticore. Accessed 4 July 2019
3. Themida. https://www.oreans.com/themida.php. Accessed 4 July 2019
4. Vmprotct. https://vmpsoft.com/. Accessed 4 July 2019
5. Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., Pretschner, A.: Code obfus-

cation against symbolic execution attacks. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications, ACSAC 2016, pp. 189–200. ACM,
New York (2016). https://doi.org/10.1145/2991079.2991114

6. Bao, T., Wang, R., Shoshitaishvili, Y., Brumley, D.: Your exploit is mine: automatic
shellcode transplant for remote exploits. In: 2017 IEEE Symposium on Security and
Privacy (SP), pp. 824–839, May 2017. https://doi.org/10.1109/SP.2017.67

7. Bardin, S., David, R., Marion, J.Y.: Backward-bounded DSE: targeting infeasibility
questions on obfuscated codes, pp. 633–651, May 2017. https://doi.org/10.1109/
SP.2017.36

8. Bauman, E., Lin, Z., Hamlen, K.: Superset disassembly: statically rewriting x86
binaries without heuristics. In: Proceedings of the 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, CA, February 2018

9. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit
generation is possible: techniques and implications. In: 2008 IEEE Symposium on
Security and Privacy (SP 2008), pp. 143–157, May 2008. https://doi.org/10.1109/
SP.2008.17

10. Coogan, K., Lu, G., Debray, S.K.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: ACM Conference on Computer & Commu-
nications Security (2011)

11. Kalysch, A., Götzfried, J., Müller, T.: VMAttack: deobfuscating virtualization-
based packed binaries. In: The 12th International Conference (2017)

12. Liang, M., Li, Z., Zeng, Q., Fang, Z.: Deobfuscation of virtualization-obfuscated
code through symbolic execution and compilation optimization. In: Qing, S.,
Mitchell, C., Chen, L., Liu, D. (eds.) ICICS 2017. LNCS, vol. 10631, pp. 313–324.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89500-0 28

13. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2005, pp. 190–200. ACM,
New York (2005). https://doi.org/10.1145/1065010.1065034

14. Ming, J., Xu, D., Jiang, Y., Wu, D.: BinSim: trace-based semantic binary
diffing via system call sliced segment equivalence checking. In: 26th USENIX
Security Symposium (USENIX Security 2017), pp. 253–270. USENIX Asso-
ciation, Vancouver (2017). https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/ming

15. Rolles, R.: Unpacking virtualization obfuscators. In: Proceedings of the 3rd
USENIX Conference on Offensive Technologies, January 2009

16. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware
emulators. In: IEEE Symposium on Security & Privacy (2009)

17. Wang, R., et al.: Ramblr: making reassembly great again. In: Proceedings of the
Network and Distributed System Security Symposium (2017)

18. Xu, D., Ming, J., Fu, Y., Wu, D.: VMHunt: a verifiable approach to partially-
virtualized binary code simplification. In: Proceedings of the 2018 ACM SIGSAC

https://www.oreans.com/codevirtualizer.php
https://github.com/trailofbits/manticore
https://www.oreans.com/themida.php
https://vmpsoft.com/
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1109/SP.2017.67
https://doi.org/10.1109/SP.2017.36
https://doi.org/10.1109/SP.2017.36
https://doi.org/10.1109/SP.2008.17
https://doi.org/10.1109/SP.2008.17
https://doi.org/10.1007/978-3-319-89500-0_28
https://doi.org/10.1145/1065010.1065034
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming

SymSem: Symbolic Execution with Time Stamps for Deobfuscation 245

Conference on Computer and Communications Security, CCS 2018, pp. 442–458.
ACM, New York (2018). https://doi.org/10.1145/3243734.3243827

19. Yadegari, B., Debray, S.: Symbolic execution of obfuscated code. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS 2015, pp. 732–744. ACM, New York (2015). https://doi.org/10.1145/2810103.
2813663

https://doi.org/10.1145/3243734.3243827
https://doi.org/10.1145/2810103.2813663
https://doi.org/10.1145/2810103.2813663

	SymSem: Symbolic Execution with Time Stamps for Deobfuscation
	1 Introduction
	2 Challenges
	2.1 Challenges with Multiple Symbolic Expressions
	2.2 Challenges with Alias Symbolic Values

	3 Symbolic Execution with Time Stamps
	3.1 How Time Stamp Tackles Read After Write Hazards
	3.2 How Time Stamp Tackles Alias Values

	4 Design
	4.1 Overview
	4.2 VM Architecture Analysis
	4.3 Symbolic Execution with Time Stamps
	4.4 IR Generation and Compilation

	5 Implementation
	6 Evaluation
	6.1 Experimental Framework
	6.2 Our Tool Can Accurately Analyse the Arch of VM Trace
	6.3 Our Tool Can Accurately Recover the IR of vm Trace
	6.4 The Overhead of Our Tool

	7 Related Works
	8 Discussion
	9 Conclusion
	References

